Oscillation and comparison theorems for half-linear second-order difference equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New comparison and oscillation theorems for second-order half-linear dynamic equations on time scales

∧ second-order half-linear dynamic equation (r(t)(x(t))) + p(t)x(σ (t)) = 0, where r(t) > 0, p(t) are continuous, ∫ ∞ t0 (r(t)) 1 α ∆t = ∞, α is a quotient of odd positive integers. In particular, no explicit sign assumptions aremadewith respect to the coefficient p(t). We give conditions under which every positive solution of the equations is strictly increasing. For α = 1, T = R, the result i...

متن کامل

Oscillation theorems for second-order nonlinear delay difference equations

By means of Riccati transformation technique, we establish some new oscillation criteria for second-order nonlinear delay difference equation ∆(pn (∆xn) ) + qnf(xn−σ) = 0, n = 0, 1, 2, . . . ,

متن کامل

Oscillation Results for Third Order Half-linear Neutral Difference Equations

In this paper some new sufficient conditions for the oscillation of solutions of the third order half-linear difference equations ∆ ( an(∆ (xn + bnh(xn−δ))) α ) + qnf(xn+1−τ ) = 0 and ∆ ( an(∆ (xn − bnh(xn−δ))) α ) + qnf(xn+1−τ ) = 0 are established. Some examples are presented to illustrate the main results.

متن کامل

Forced Oscillation of Second Order Linear and Half-linear Difference Equations

Oscillation properties of solutions of the forced second order linear difference equation ∆(rk∆xk) + ckxk+1 = hk are investigated. The authors show that if the forcing term h does not oscillate, in some sense, too rapidly, then the oscillation of the unforced equation implies oscillation of the forced equation. Some results illustrating this statement and extensions to the more general half-lin...

متن کامل

Oscillation Theorems for Second-Order Half-Linear Advanced Dynamic Equations on Time Scales

This paper is concerned with the oscillatory behavior of the second-order half-linear advanced dynamic equation r t xΔ t γ Δ p t x g t 0 on an arbitrary time scale T with sup T ∞, where g t ≥ t and ∫∞ to Δs/ r1/γ s < ∞. Some sufficient conditions for oscillation of the studied equation are established. Our results not only improve and complement those results in the literature but also unify th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 2001

ISSN: 0898-1221

DOI: 10.1016/s0898-1221(01)00211-5